
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 10, OCTOBER 2009 4479

The Capacity Region of a Class of Three-Receiver
Broadcast Channels With Degraded Message Sets

Chandra Nair, Member, IEEE, and Abbas El Gamal, Fellow, IEEE

Abstract—Körner and Marton established the capacity region
for the two-receiver broadcast channel with degraded message
sets. Recent results and conjectures suggest that a straightforward
extension of the Körner–Marton region to more than two receivers
is optimal. This paper shows that this is not the case. We establish
the capacity region for a class of three-receiver broadcast channels
with two-degraded message sets and show that it can be strictly
larger than the straightforward extension of the Körner–Marton
region. The idea is to split the private message into two parts,
superimpose one part onto the “cloud center” representing the
common message, and superimpose the second part onto the re-
sulting “satellite codeword.” One of the receivers finds the common
message directly by decoding the “cloud center,” a second receiver
finds it indirectly by decoding a satellite codeword, and a third
receiver finds it by jointly decoding the transmitted codeword.
This idea is then used to establish new inner and outer bounds on
the capacity region of the general three-receiver broadcast channel
with two and three degraded message sets. We show that these
bounds are tight for some nontrivial cases. The results suggest
that finding the capacity region of the three-receiver broadcast
channel with degraded message sets is at least as hard finding as
the capacity region of the general two-receiver broadcast channel
with common and private message.

Index Terms—Broadcast channel, capacity, degraded message
sets.

I. INTRODUCTION

A BROADCAST channel with degraded message sets is
a model for communication scenarios where a sender

wishes to communicate a common message to all receivers, a
first private message to a first subset of the receivers, a second
private message to a second subset of the first subset, and so on.
Such scenario can arise, for example, in video or music broad-
casting over a wireless network at varying levels of quality.
The common message represents the lowest quality version to
be sent to all receivers, the first private message represents the
additional information needed for the first subset of receivers
to decode the second lowest quality version, and so on. What is
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the set of simultaneously achievable rates for communicating
such degraded message sets over the network?

This question was first studied by Körner and Marton in 1977
[1]. They considered a general two-receiver discrete-memory-
less broadcast channel with sender and receivers and .
A common message is to be sent to both re-
ceivers and a private message is to be sent only
to receiver . They showed that the capacity region is given by
the set of all rate pairs such that1

(1)

for some . These rates are achieved using superposition
coding [2]. The common message is represented by the auxiliary
random variable and the private message is superimposed to
generate . The main contribution of [1] is proving a strong
converse using the technique of images-of-a-set [3].

Extending the Körner–Marton result to more than two re-
ceivers has remained open even for the simple case of three
receivers with two-degraded message sets, where a
common message is to be sent to all receivers and a private
message is to be sent only to receiver . The straightfor-
ward extension of the Körner–Marton region to this case yields
the achievable rate region consisting of the set of all rate pairs

such that

(2)

for some . Is this region optimal?
In [4], it was shown that the above region (and its natural ex-

tension to receivers) is optimal for a class of product dis-
crete-memoryless and Gaussian broadcast channels, where each
of the receivers who decodes only the common message is a de-
graded version of the unique receiver that also decodes the pri-
vate message. In [5], it was shown that a straightforward exten-
sion of Körner–Marton region is optimal for the class of linear
deterministic broadcast channels, where the operations are per-
formed in a finite field. In addition to establishing the degraded
message set capacity for this class, the authors gave an explicit
characterization of the optimal auxiliary random variables. In
a recent paper, Borade et al. [6] introduced multilevel broad-
cast channels, which combine aspects of degraded broadcast
channels and broadcast channels with degraded message sets.
They established an achievable rate region as well as a “mirror-

1The Körner–Marton characterization does not include the second term inside
the min in the first inequality ��� �� �. Instead it includes the bound� �� �

����� �. It can be easily shown that the two characterizations are equivalent.
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Fig. 1. Multilevel three-receiver broadcast channels. Message� is to be sent
to all receivers and message � is to be sent only to � .

image” outer bound for these channels. Their achievable rate re-
gion is again a straightforward extension of the Körner–Marton
region to -receiver multilevel broadcast channels. In partic-
ular, Conjecture 5 of [6] states that the capacity region for the
three-receiver multilevel broadcast channels depicted in Fig. 1
is the set of all rate pairs such that

(3)

for some . Note that this region, henceforth referred to
as the BZT region, is the same as (2) because in the multilevel
broadcast channel is a degraded version of and therefore

.
In this paper, we show that the straightforward extension of

the Körner–Marton region to more than two receivers is not in
general optimal. We establish the capacity region of the multi-
level broadcast channels depicted in Fig. 1 as the set of rate pairs

such that

for some (i.e., forms a Markov
chain), and show that it can be strictly larger than the BZT re-
gion. In our coding scheme, the common message is rep-
resented by (the cloud centers), part of is superimposed
on to obtain (satellite codewords), and the rest of is
superimposed on to yield . Receiver finds by
decoding . Receiver finds by decoding , whereas re-
ceiver finds indirectly by decoding a satellite codeword

.
Although it seems surprising that higher rates can be achieved

by having decode more than it needs to, this result can be
explained by the fact that for a general two-receiver broadcast
channel , one can have the conditions

and hold simultaneously [13].
Now, considering our three-receiver broadcast channel scenario,
suppose we have a choice of such that .
In this case, requiring both and to directly decode ne-
cessitates that the rate of the common message be less than

. From the above fact, a may exist such that
and , in which case the rate of the

common message can be increased to and can still
find indirectly by decoding . Thus, although the additional

“degree of freedom” resulting from the introduction of comes
at the expense of having decode more than it is required to,
it can yield higher achievable rates.

The rest of this paper is organized as follows. In Section II,
we provide needed definitions. In Section III, we establish the
capacity region for the multilevel broadcast channel in Fig. 1
(Theorem 1). In Section IV, we show through an example that
the capacity region for the multilevel broadcast channel can be
strictly larger than the BZT region. In Section V, we extend the
results on the multilevel broadcast channel to establish inner and
outer bounds on the capacity region of the general three-receiver
broadcast channel with two-degraded message sets (Proposi-
tions 5 and 6). We show that these bounds are tight when is
less noisy than (Proposition 7), which is a more relaxed con-
dition than the degradedness condition of the multilevel broad-
cast channel model. We then extend the inner bound to three-de-
graded message sets (Theorem 2). Although Proposition 5 is a
special case of Theorem 2, it is presented earlier for clarity of
exposition. Finally, we show that the inner bound of Theorem
2 when specialized to the case of two-degraded message sets,
where is to be sent to all receivers and is to be sent
to and , reduces to the straightforward extension of the
Körner–Marton region (Corollary 1). We show that this inner
bound is tight for deterministic broadcast channels (Proposition
10) and when is less noisy than and is less noisy than

(Proposition 11).

II. DEFINITIONS

Consider a discrete-memoryless three-receiver broadcast
channel consisting of an input alphabet , output alphabets ,

, and , and a probability transition function .
A two-degraded message set code for a

three-receiver broadcast channel consists of: 1) a pair of mes-
sages uniformly distributed over

, 2) an encoder that assigns a codeword , for
each message pair , and
3) three decoders, one that maps each received sequence
into an estimate , a
second that maps each received sequence into an estimate

, and a third that maps each received
sequence into an estimate .

The probability of error is defined as

or for or

A rate tuple is said to be achievable if there exists a
sequence of -degraded message set codes with

. The capacity region of the broadcast channel is the
closure of the set of achievable rates.

A three-receiver multilevel broadcast channel [6] is a
three-receiver broadcast channel with two-degraded message
sets where for every

(see Fig. 1).
In addition to considering the multilevel three-receiver broad-

cast channel and the general three-receiver broadcast channel
with two-degraded message sets, we will also consider the fol-
lowing two scenarios.
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1) Three-receiver broadcast channel with three message sets,
where is to be sent to all receivers, is to be sent to

and , and is to be sent only to .
2) Three-receiver broadcast channel with two-degraded mes-

sage sets, where is to be sent to all receivers and is
to be sent to and .

Definitions of codes, achievability, and capacity regions for
these cases are straightforward extensions of the above defi-
nitions. Clearly, the two-degraded message set scenarios are
special cases of the three-degraded message set. Nevertheless,
we will begin with the special class of multilevel broadcast
channel because we are able to establish its capacity region.

III. CAPACITY OF THREE-RECEIVER MULTILEVEL

BROADCAST CHANNEL

A key result of this paper is given in the following theorem.

Theorem 1: The capacity region of the three-receiver multi-
level broadcast channel in Fig. 1 is the set of rate pairs
such that

(4)

for some , where the cardinalities of the aux-
iliary random variables satisfy and

.

Remark 3.1: It is straightforward to show by setting
in the above theorem that the BZT region (3) is contained in the
capacity region (4). We show in the next section that the capacity
region (4) can be strictly larger than the BZT region.

Remark 3.2: It is straightforward to show that the above re-
gion is convex and therefore there is no need to use a time-
sharing auxiliary random variable.

The proof of Theorem 1 is given in the following subsections.
We first prove the converse. In Section III-C, we prove achiev-
ability, and in Section III-D, we establish the bounds on the car-
dinalities of the auxiliary random variables.

A. Converse of Theorem 1

We show that the region in Theorem 1 forms an outer
bound to the capacity region. The proof is quite similar to pre-
vious weak converse and outer bound proofs for two-receiver
broadcast channels (e.g., see [7]–[9]). Suppose we are given
a sequence of codes for the multilevel broadcast channel with

. For each code, we form the empirical distribution
for .

Since forms a physically degraded broadcast
channel, it follows that the code rate pair must satisfy
the inequalities

(5)

for some , where are defined as follows [7],
[12]. Let , and let be a
time-sharing random variable uniformly distributed over the set

and independent of . We then set
and , , and . Thus,

we have established the bounds in five.
Next, since the decoding requirements of the broadcast

channel makes it a broadcast channel with
degraded message sets, the code rate pair must satisfy the
inequalities

for some [8], where is identified as follows. Let
, then we set .

Combining the above two outer bounds, we see that
forms a Markov chain. Observe that this Markov na-

ture of the auxiliary random variables along with the degraded
nature of implies that

. Thus, we have shown that the code rate pair
must be in region (4). This establishes the converse to Theorem
1.

B. Achievability of Theorem 1

The interesting part of the proof of Theorem 1 is achiev-
ability. We split the rate of the private message into two parts

with rates , respectively. Thus, .
The common message is represented by , is
represented by , and is represented by . Receiver

finds by decoding , receiver finds by de-
coding , and receiver finds indirectly by decoding .
We now provide details of the proof.

Code Generation: Fix a distribution .
Randomly and independently generate sequences

, each dis-
tributed uniformly over the set of -typical2 sequences.
For each , randomly and independently generate
sequences , each distributed
uniformly over the set of conditionally -typical sequences
given . For each , randomly and indepen-
dently generate sequences , ,
each distributed uniformly over the set of conditionally -typ-
ical sequences given .

Encoding: To send the message pair
, the sender expresses by the pair

and sends .
Decoding and Analysis of Error Probability:

1) Receiver declares that is sent if it is the unique mes-
sage such that and are jointly -typical. It is
easy to see that this can be achieved with arbitrarily small
probability of error if

(6)

2We assume strong typicality [10] throughout this paper.
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2) Receiver declares that is sent if it is the
unique triple such that and are jointly
-typical. It is easy to see using joint decoding that this

decoding succeeds with high probability as long as

(7)

3) Receiver finds as follows. It declares that
is sent if it is the unique index such that

and are jointly -typical for some .
We claim that receiver can correctly decode with
arbitrarily small probability of error if

(8)

Since , there exists such that
. Suppose

is the message pair sent, then the probability of
error averaged over the choice of codebooks can be upper
bounded as follows:

are not jointly -typical

are jointly -typical

for some

jointly -typical

where follows by the union of events bound, follows
by the fact that for , and are gen-
erated completely independently and thus each probability
term under the sum is upper bounded by
[10] as , follows from .
We know that as and therefore with ar-
bitrarily high probability, any jointly -typ-
ical with the received sequence must be of the form

. Hence, receiver can correctly decode
with arbitrarily small probability of error if

Thus, from (6)–(8), all receivers can decode their intended mes-
sages with arbitrarily small probability of error if

Substituting and using the Fourier–Motzkin
procedure [17] to eliminate and shows that any rate pair

, satisfying the conditions in four, is achievable. This
completes the proof of achievability of Theorem 1.

We will refer to the decoding step of as indirect decoding,
since the receiver decodes indirectly by decoding . Do we
achieve the same region by having jointly decode ?
To answer this question, note that for the joint decoder, the prob-
ability of error can be made arbitrarily small if

Since bounding the probability of error for the indirect decoder
requires only the first inequality, it is in general less restric-
tive than the joint decoder. Now, combining the conditions for
the joint decoder to succeed with (6) and (7) and performing
Fourier–Motzkin to eliminate and , we obtain the set of
rate pairs satisfying

for some .
Note that this region involves one more inequality than the

capacity region given by (4). However, by optimizing the choice
of for each given , we can show that this inequality is not
necessary. There are two cases.

Case 1) : In this case, it is easy to see
that the optimal choice is to set . Thus, in-
direct decoding and joint decoding yield the same
region.

Case 2) : In this case, for any , at
the corner point of the indirect decoding region pre-
scribed by the pair of random variables , we
have

Clearly ,
which implies that

i.e., satisfies the additional constraint that joint
decoding imposes and hence the corner point is in
the joint decoding region. Thus, the regions obtained
via indirect decoding and those obtained via joint
decoding are equal.

Remark 3.3: In spite of this equivalence, indirect decoding
offers some advantages over joint decoding.

1) Indirect decoding yields less inequalities than joint de-
coding, and thus results in simpler achievable rate region
descriptions. This is akin to the equivalent but simpler de-
scription of the Han–Kobayashi achievable rate region for
the interference channel in [15].

2) Proving the converse for the joint decoding region directly
seems very difficult. Using indirect decoding (which shows
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that the extra inequality in the description of the joint de-
coding region is superfluous) makes proving the converse
quite straightforward.

3) As we generalize achievability to broadcast channels with
various message set requirements, it is not clear that the
extra inequalities imposed by joint decoding would still be
redundant. Hence, it is conceivable that indirect decoding
can outperform joint decoding in general.

C. Proof of Cardinality Bounds in Theorem 1

The bounds on the cardinality of the auxiliary random vari-
ables are based on a strengthened version of Carathéodory’s
theorem by Fenchel and Eggleston stated in [11]. The strength-
ened Carathéodory theorem along with standard arguments
[12] imply that for any choice of the auxiliary random vari-
able , there exists a random variable with cardinality
bounded by such that and

. Similarly for any choice of
, one can obtain a random variable with cardinality

bounded by such that and
. While these cardinality-bounded

random variables do not change the numerical value of the
bounds in (4), it is not clear that they preserve the Markov
condition . To circumvent this problem and
preserve the Markov chain, we adapt arguments from [11],
where the authors dealt with the same issue, to establish the
cardinality bounds stated in Theorem 1. For completeness, we
provide an outline of the argument.

This argument is proved in two steps. In the first step, a
random variable and transition probabilities are
constructed such that the following are held constant: , the
marginal probability (and hence ),

, , , , and .
Using standard arguments [11], [12], there exists a random
variable (with cardinality of bounded by )
and transition probabilities that satisfy the above
constraints. Note that the distribution of is not necessarily
preserved and hence denotes the resulting random variable as

.
We thus have random variables such that

(9)

In the second step, for each , a new random vari-
able is found such that the following are held constant:

, the marginal distribution of conditioned on
, , and . Again stan-

dard arguments imply that there exists a random variable
(with cardinality of bounded by ) and transition prob-
abilities that satisfy the above constraints. This in
particular implies that

(10)

Now, set and observe the following as a
consequence of (9) and (10):

We thus have the required random variables satisfying
the cardinality bounds and , re-
spectively, as desired. Furthermore, observe that
and hence forms a Markov chain.

IV. MULTILEVEL PRODUCT BROADCAST CHANNEL

In this section, we show that the BZT region can be strictly
smaller than the capacity region in Theorem 1.

Consider the product of two three-receiver broadcast chan-
nels given by the Markov relationships

(11)

In the Appendix, we derive the following simplified characteri-
zations for the capacity and the BZT regions.

Proposition 1: The BZT region for the above product channel
reduces to the set of rate pairs such that

(12a)

(12b)

(12c)

for some .

Proposition 2: The capacity region for the product channel
reduces to the set of rate pairs such that

(13a)

(13b)

(13c)

(13d)

for some .

Now we compare these two regions via the following exam-
ples.

A. Discrete-Memoryless Example

Consider the multilevel product broadcast channel example
in Fig. 2, where , and

, , , the channels
and are binary erasure channels (BEC)

with erasure probability , and the channel is given
by the transition probabilities: ,

,
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Fig. 2. Product multilevel broadcast channel example.

. There-
fore, the channel is effectively a BEC with erasure
probability .

The BZT region can be simplified to the following.

Proposition 3: The BZT region for the above example re-
duces to the set of rate pairs satisfying

(14)

for some .

The proof of this proposition is given in the Appendix. It is
quite straightforward to see that lies on the
boundary of this region.

The capacity region can be simplified to the following

Proposition 4: The capacity region for the channel in Fig. 2
reduces to set of rate pairs satisfying

(15)

for some .

The proof of this proposition is also given in the Appendix.
Note that substituting yields the BZT region. By setting

, , and , it is easy to see that
lies on the boundary of the capacity region. On the

other hand, for , the maximum achievable in the
BZT region is 5/12. Thus, the capacity region is strictly larger
than the BZT region.

Fig. 3 plots the BZT region and the capacity region for the
example channel. Both regions are specified by two line seg-
ments. The boundary of the BZT regions consists of the line seg-

ments: to and to . The ca-
pacity region on the other hand is formed by the pair of line seg-
ments: to and to . Note
that the boundaries of the two regions coincide on the line seg-
ment joining to .

B. Gaussian Example

Consider a three-receiver Gaussian product multilevel broad-
cast channel, where

The power of noise component is for . We
assume a total average power constraint on .

Using Gaussian signaling, it can be easily shown that the BZT
region is the set of all such that

(16)

for some , . Now using Gaussian
signaling to evaluate region (13), we obtain the achievable rate
region consisting of the set of all such that

(17)

for some and .
Now consider the above regions with the parameters values:

.
Fixing , we can show that the
maximum achievable in the Gaussian BZT region is

. This is attained using the values
, , and
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Fig. 3. BZT and the capacity regions for the channel in Fig. 2.

On the other hand, setting , , and
retaining the values ,

, the inequalities for region 17 reduce to

Therefore, the rate pairs
are achievable (which is outside the BZT re-

gion).

Remark 4.1: Note that the BZT region can be viewed as a re-
striction of the capacity region onto plane. At the above
extreme point of the BZT region, it can be shown that, if we keep
the products and constant, then any small perturbation

, ,
, where , leads to a strict increase in

for a fixed . The improvement presented is obtained by taking
, and , respectively.

Thus, restricted to Gaussian signaling, the BZT region (12)
is strictly contained in region (13). However, we have not been
able to prove that Gaussian signaling is optimal for either the
BZT region or the capacity region.

Remark 4.2: The reader may ask why we did not consider the
more general product channel

In fact, we considered this more general class at first but were
unable to show that the capacity region conditions reduce to the
separated form

for some .

V. GENERAL THREE-RECEIVER BROADCAST CHANNEL WITH

DEGRADED MESSAGE SETS

In this section, we extend the results in Section III to ob-
tain inner and outer bounds on the capacity region of general
three-receiver broadcast channel with degraded message sets.
We first consider the same two-degraded message set scenario
as in Section III but without the condition that

form a degraded broadcast channel. We establish inner and
outer bounds for this case and show that they are tight when the
channel is less noisy than the channel , which
is a more general class than degraded broadcast channels [13].
We then extend our results to the case of three-degraded mes-
sage sets, where is to be sent to all receivers, is to be sent
to receivers and , and is to be sent only to receiver .
A special case of this inner bound gives an inner bound to the
capacity of the two-degraded message set scenario where is
to be sent to all receivers and is to be sent to receivers
and only.

A. Inner and Outer Bounds for Two-Degraded Message Sets

We use rate splitting, superposition coding, indirect decoding,
and the Marton achievability scheme for the general two-re-
ceiver broadcast channels [14] to establish the following inner
bound.
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Proposition 5: A rate pair is achievable in a gen-
eral three-receiver broadcast channel with two-degraded mes-
sage sets if it satisfies the following inequalities:

(18)

for some

(or in other words, both and
form Markov chains).

Proof: The general idea is to split into four inde-
pendent parts , and . The message pair

is represented by . Using superposition and
Marton coding, the message triple is rep-
resented by and the message triple is
represented by . Finally, using superposition coding, the
message pair is represented by . Receiver
decodes , and receivers and find via
indirect decoding of and , respectively, as in Theorem 1.

We now provide a more detailed outline of the proof.
Code Generation: Let , where

, , and and . Fix a
probability mass function of the required form

Randomly and independently generate sequences
, , each dis-

tributed uniformly over the set of typical sequences. For each
, randomly and independently generate se-

quences , , each distributed uni-
formly over the set of conditionally typical sequences, and

sequences , , each dis-
tributed uniformly over the set of conditionally typical se-
quences. Randomly partition the sequences
into equal size bins and the sequences
into equal size bins. To ensure that each product bin con-
tains a jointly typical pair with
arbitrarily high probability, we require that (see [16] for the
proof)

(19)

Finally, for each chosen jointly typical pair
in each product bin

, randomly and conditionally independently generate
sequences , , each

distributed uniformly over the set of conditionally typical
sequences.

Encoding: To send the message pair , we express
by the quadruple and send the codeword

.
Decoding:

1) Receiver declares that is sent if it is
the unique rate tuple such that is jointly typical with

and is the product bin number of and
is the product bin number of . Assuming

is sent, we partition the
error event into the following events.

a) Error event corresponding to oc-
curs with arbitrarily small probability provided

(20)

b) Error event corresponding to
occurs with arbitrarily small probability

provided

(21)

c) Error event corresponding to
occurs with arbitrarily small probability

provided

(22)

The equality follows from the fact that
form a Markov chain.

d) Error event corresponding to
occurs with arbitrarily small probability

provided

(23)

The above equality uses the fact that
forms a Markov chain.

e) Error event corresponding to
occurs with arbitrarily small prob-

ability provided

(24)

Note that the equality here uses a weaker Markov
structure .

Thus, receiver decodes with arbi-
trarily small probability of error provided (20)–(24) hold.

2) Receiver decodes (and hence ) via indirect
decoding using (as in Theorem 1). This can
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be achieved with arbitrarily small probability of error pro-
vided

(25)

3) Receiver decodes (and hence ) via indirect
decoding using (as in Theorem 1). This can
be achieved with arbitrarily small probability of error pro-
vided

(26)

Combining (19)(20)–(24)(26), we obtain the following:

(27)

for some

Using the Fourier–Motzkin procedure to eliminate , , ,
, and , we obtain the inequalities in (18).

Remark 5.1: The above achievability scheme can be adapted
to any joint distribution . However, by letting

and letting , we observe that the
region remains unchanged. Hence, without loss of generality,
we assume the structure of the auxiliary random variables as
described in the proposition. Further, using the construction
of , observe that one can restrict to triples ,
where , and and are two deterministic
mappings. Note that the auxiliary random variables in the outer
bound described in the next subsection also possess the same
structure.

Remark 5.2: A special choice of the auxiliary random vari-
ables is to set or equal to (i.e., only one of the receivers
tries to indirectly decode ), say let . This reduces
the inequalities in Proposition 5 (after removing the redundant
ones) to

(28)

where form a Markov chain.

This region includes the capacity region of the multilevel case
in Theorem 1 and hence is tight in this setting.

Remark 5.3: Note that the rate splitting scheme we used in
the proof of the proposition includes rate transfer, where part of
the split message is combined with and encoded using

. This rate transfer can be used also in the Körner–Marton two-
receiver broadcast channel with degraded message sets. Recall
that without rate splitting, we obtain the decoding constraints

(29)

Using rate splitting, we divide into two independent parts
at rates and , and set . This
yields the decoding constraints

Performing Fourier–Motzkin procedure, we obtain

(30)

It is easy to see that the region given by the new rate splitting
arguments is identical to the original region. However, the form
of the new region is more conducive to the establishment of the
weak converse. The same equivalence holds for the three-re-
ceiver broadcast channel with two-degraded message sets dis-
cussed in Section III.

Similar rate transfer arguments have been used before. For in-
stance, Liang [19] used it for the two-receiver broadcast chan-
nels to obtain a region that is at least as large as the Marton
region. The equivalence of the region obtained by Liang to the
original Marton region was later established in [18].

We now establish the following outer bound.

Proposition 6: Any achievable rate pair for the gen-
eral three-receiver broadcast channel with two-degraded mes-
sage sets must satisfy the conditions

for some

i.e., the same structure of the auxiliary random variables as
in Proposition 5. Further, one can restrict the cardinalities of

to , ,
and .

Proof: The proof follows largely standard arguments. The
auxiliary random variables are identified as ,
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, and . With this identifi-
cation inequalities, and are
immediate. The other two inequalities also follow from standard
arguments and are briefly outlined here

where as approaches infinity, and follows by
the Csiszár sum equality. The cardinality bounds are established
using a similar argument as in Section III-D. To create a set of
new auxiliary random variables with the bounds of Proposition
6, we first replace by and by . It is easy to
see from the Markov chain relationships
and that the following region is same as
the that of Proposition 6:

(31)

Then, using standard arguments, one can replace by
satisfying , such that the distribution of

and , , , ,
, , and is preserved. Now

for each , one can find with cardinality less
than each, such that the distribution of conditioned
on , , and
is preserved. Similarly, one can find for each a
random variable with cardinality less than
each, such that the distribution of conditioned on ,

, and is preserved. This
yields random variables that preserve the region in
(31). (Note that as the distribution of conditioned on
is preserved by both and , it is possible to get
a consistent triple of random variables .) Finally,
setting , , and
gives the desired bounds on cardinality as well as the desired
Markov relations.

Remark 5.4: The above outer bound appears to be very
different from the inner bound of Proposition 5. However, by
taking appropriate sums of the inequalities defining the region
of Proposition 6, we arrive at the conditions

These conditions, which include some redundancy, are closer in
structure to the inequalities defining the inner bound of Propo-
sition 5.

Remark 5.5: The outer bound in Proposition 6 reduces to the
capacity region for the multilevel case in Theorem 1. To see this
observe that when form a Markov chain, then

(32)

Thus, any rate pair satisfying the constraints of
Proposition 6 must satisfy

(33)

(34)

However, any rate pair satisfying these constraints is achievable
as shown in Theorem 1, and hence, the outer bound of Proposi-
tion 6 is tight for this setting.

The inner and outer bounds match if is less noisy than
[13], that is, if for all . As

shown in [13], this condition is more general than degradedness.
As such, it defines a larger class than multilevel broadcast chan-
nels.

Proposition 7: The capacity region for the three-receiver
broadcast channel with two-degraded message sets when
is a less noisy receiver than is given by the set of rate pairs

such that

(35)

(36)

for some .

From the definition of less noisy receivers [13], we have
for every choice of , and

thus, for every .
Using (32), it follows that the general outer bound is contained
in (33). Any rate pair satisfying (35) also satisfies (under
the less noisy assumption) the constraints in (28) and thus is
achievable by setting in the region of Proposition 5.

B. Inner Bound for Three-Degraded Message Sets

We establish an inner bound to the capacity region of the
broadcast channel with three-degraded message sets where
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is to be sent to all three receivers, is to be sent only to
and , and is to be sent only to . We then specialize the
result to the case of two-degraded message sets scenario, where

is to be sent to all receivers and is to be sent to and
and establish optimality for two classes of channels.

The achievability proof of the region for the above scenario is
closely related to that of Proposition 5. To explain the connec-
tion, consider the more general three-receiver broadcast channel
scenario, where message is to be decoded by all receivers,
message is to be decoded by receivers , message
is to be decoded by receivers , and message is to be
decoded by receiver . Observe that letting

yields the two-degraded message set scenario considered in
Proposition 5, and letting yields the three-degraded
message set requirement under consideration. Thus, the region
in Proposition 5 and the region for the three-degraded message
sets given in Theorem 2 below can be thought of as lower dimen-
sional projections of the region for the more general broadcast
channel scenario with message sets in the union of these two
message sets. With this motivation, we identify each message
set in the superset by the subset of receivers that are required to
decode it, and associate with each receiver subset an auxiliary
random variable as follows:

Since receiver is required to decode all messages, one can
show that setting is optimal. We also use the rate
transfer technique alluded to in Remark 5.3 to establish the
achievable region.

Let and be the
rate splitting as proposed in Proposition 5.

Code generation proceeds similarly to Proposition 5, i.e.,
we first generate sequences. For each
sequence, we generate sequences and se-
quences and then partition them into and bins,
respectively. We then find a jointly typical pair in each
product bin, and generate sequences for each such pair.

Decoding proceeds in a similar way. decodes
by decoding , decodes by decoding , and de-
codes by indirectly decoding from . To ensure that the
encoding and the decoding are successful with high probability,
we impose the following constraints on the rates:

(37)

for some

Eliminating , , , , , , , and via the
Fourier–Motzkin procedure with the rate splitting constraints

and , we obtain
the following achievable rate region.

Theorem 2: A rate triple is achievable in a gen-
eral three-receiver broadcast channel with three-degraded mes-
sage sets if it satisfies the conditions

(38)

for some

i.e., as before both and
form Markov chains.

Proposition 8: The region of Theorem 2 reduces to the inner
bound of Proposition 5 by setting .

Proof: To show this, denote by the rate region pre-
scribed by the constraints in (27), and the rate region pre-
scribed by the constraints in (37). Note that in (27) the rate ,
which corresponds to the rate of the private message to receiver

, is denoted as , i.e., we need to compare the rate pairs
from (37) to the rate pairs from (27). We

compare the set of constraints in (27) and in (37) when ,
i.e., . Observe that (37) has exactly one extra
constraint, , when compared to the constraints
in (27). Therefore, . Hence, it suffices to show that

.
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Consider any rate pair and random vari-
ables satisfying the constraints in (27). We consider
two cases.
Case 1) . Since

, this implies that the rates and the cor-
responding auxiliary random variables also satisfy

, and hence belong to .
Case 2) . Consider the following iden-

tification: , , ,
, , , , , ,

. It is easy to see that the rate pairs
satisfy all the required constraints in (37) and hence
belong to . Thus, as desired.

Remark 5.6: Indeed a natural extension of this argument im-
plies that the region in Proposition 5 does not change under
the addition of the constraints , and

. Therefore, a joint decoding strategy would have
resulted in the same region as the indirect decoding strategy.
However, as mentioned in part 3 of Remark 3.3, it is not clear
to the authors whether this is always the case.

We now consider a two-degraded message set scenario where
is to be sent to all receivers and is to be sent to receivers

and . The following inner bound follows from Theorem 2
by setting .

Corollary 1: A rate pair is achievable in a three-re-
ceiver broadcast channel with two-degraded message sets,
where is to be decoded by all three receivers and is
to be decoded only by and if it satisfies the following
conditions:

(39)

for some .

This region is the straightforward extension of the
Körner–Marton scheme to the current scenario.

Proposition 9: The region described by Corollary 1 coincides
with the region described by Theorem 2 when .

Proof: By setting , , and , the
region in Theorem 2 reduces to (39). Thus, region in (39) is
contained in region (38). There it suffices to show that the pro-
jection of the region (38) to the plane is contained in
region (39). To prove this, observe that

Thus, the rate pairs must satisfy the following inequalities:

(40)

Clearly, this is contained inside region (39) and hence region
(38) reduces to the one in Corollary 1 when .

Inner bound (Corollary 1) is optimal for the following two
special classes of broadcast channels.

Proposition 10: Achievable region (39) is tight for determin-
istic three-receiver broadcast channels. Indeed it is tight as long
as the channel is deterministic.

Proof: By setting in (39), we see that rate pairs
is achievable if

for some . Clearly, these constraints also constitute an outer
bound and hence they provide a tight characterization of the
capacity region.

Proposition 11: Achievable region (39) is optimal when
is a less noisy receiver than and is a less noisy receiver
than .

Proof: To show optimality, we set , and
thus, the only nontrivial inequality in the converse is

. To prove this, ob-
serve that

where follows by the Csiszár sum equality and uses
the assumption that is a less noisy than , which implies
that . The
bound can be proved similarly.

Remark 5.7: Note that this result generalizes [4, Th. 3.2],
where the authors assume that the receivers and are de-
graded versions of .
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VI. CONCLUSION

Recent results and conjectures on the capacity region of
-receiver broadcast channels with degraded message

sets [4]–[6] have lent support to the general belief that the
straightforward extension of the Körner–Marton region for
the two-receiver case is optimal. This paper shows that this
is not the case. We showed that the capacity region of the
three-receiver broadcast channels with two-degraded message
sets can be strictly larger than the straightforward extension
of the Körner–Marton region. Achievability is proved using
rate splitting and superposition coding. We showed that a
simpler characterization of the capacity region results using
indirect decoding instead of joint decoding. Using these ideas,
we devised a new inner bound to the capacity of the general
three-receiver broadcast channel with three-degraded message
sets and showed that it is tight in some cases.

The results in this paper suggest that the capacity of the
-receiver broadcast channels with degraded message sets is at

least as hard to characterize in a single-letter way as the capacity
region of the general two-receiver broadcast channel with one
common and one private message sets. However, it would be in-
teresting to explore the optimality of our new inner bounds for
classes where capacity is known for the general two-receiver
case, such as deterministic and vector Gaussian broadcast chan-
nels. It would also be interesting to investigate applications of
indirect decoding to other problems, for example, the three-re-
ceiver broadcast channels with confidential message sets [11].

Our results also show that a straighforward extension of
Marton’s achievable rate region to more than two receivers is
not in general optimal. The structure of the auxiliary random
variables in the inner bounds can be naturally extended to three
or more receivers with arbitrary message set requirements as
will be detailed in a future publication.

APPENDIX

PROOF OF PROPOSITIONS 1–4

To prove Propositions 1 and 2, note that it is straightforward
to show that each simplified characterization is contained in the
original region as the characterizations are obtained by using the
channels independently. So we only prove the other nontrivial
direction.

Proof of Proposition 1: We prove that for the product
broadcast channel given by (11), the BZT region (3) reduces to
the expression (12).

Consider the first term in the BZT region

Now set and . Thus, the above inequality
becomes

This inequality is the first term (12a) in (12). To complete the
equivalence, we have to show that the remaining constraints of
(12) are also satisfied by our choice and .

Observe that

Finally, consider the last term

This implies that all constraints of (12) are satisfied by
the choice and . The fact that

suffices follows from the struc-
ture of the mutual information terms.

Proof of Proposition 2: We prove that for the product
broadcast channel (11) the capacity region given by Theorem 1
reduces to the expression (13).

Consider the first term (13a) in the capacity region

Now set and .
The second term (13b) in the capacity region is

. Now set and from ,
we have . Thus, the second term can be
rewritten as

Consider the third term in the capacity region

Finally, consider the last term in the capacity region

The fact that suffices fol-
lows from the structure of the mutual information terms.

In the proof of Propositions 3 and 4, we will make use of the
following simple fact about the entropy function [10]:
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Proof of Proposition 3: We prove that the region given by
(12) reduces to (14) for the binary erasure channel described by
the example in Section IV-A.

Let . Then

Similarly, let .
Then

Now setting , and
, we obtain

Fig. 4. Auxiliary channels that achieve the boundary of the BZT region.

Therefore, any rate pair in the BZT region must satisfy the
conditions

for some .
It is easy to see that equality is achieved when the marginals

of are given by
and the marginals of are given by

, (see Fig. 4).
Proof of Proposition 4: We prove that the region (13) re-

duces to region (15) for the binary erasure channel described by
the example in Section IV-A.

Assume that , ,
, , ,

and . Further, there exist
such that

Clearly, from the Markov condition , we require
, or equivalently, .

We can also establish the following in a similar fashion:
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Fig. 5. Auxiliary channels that achieve the boundary of the capacity region.

Thus, any rate pair in the capacity region must satisfy

for some . Note that substituting
yields the BZT region.

Equality in the above conditions is achieved by the choices of
auxiliary random variables shown in Fig. 5, and thus the above
region is the capacity region.
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